#hardware

A Glitch in the Matrix

This post is the third in a series looking at the design and implementation of my Glitch demo and the m4vgalib code that powers it.

In part two, I showed a fast way to push pixels out of an STM32F407 by getting the DMA controller to run at top speed. I described the mode as follows:

It just runs full-tilt, restricted only by the speed of the “memory” [or memory-mapped peripheral] at either side…

But there’s a weakness in this approach, which can introduce jitter and hurt your video quality. I hinted at it in a footnote:

…and traffic on the AHB matrix, which is very important — I’ll come back to this.

Quite a bit of m4vgalib’s design is dedicated to coordinating matrix traffic, while imposing few restrictions on the application. In this article, with a minimum of movie puns, I’ll explain what that that means and how I achieved it.

Pushing Pixels

This post is the second in a series looking at the design and implementation of my Glitch demo and the m4vgalib code that powers it.

Updated 2015-06-10: clarifications from reader feedback.

For the first technical part in the series, I’d like to start from the very end: getting the finished pixels out of the microprocessor and off to a display.

Why start from the end? Because it’s where I started in my initial experiments, and because my decisions here had significant effects on the shape of the rest of the system.

Introducing Glitch

Hey, look! I made a little graphics demo!